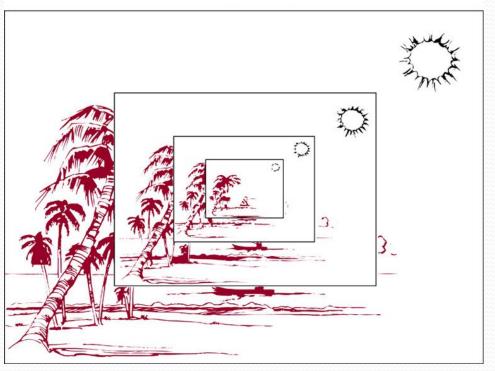
Recursive Definitions and Structural Induction Section 5.3

Chapter Summary

- Recursively defined Functions.
- Recursively defined sets and Structures
- Structural Induction

5.3 Recursive definitions and structural induction

© The McGraw-Hill Companies, Inc. all rights reserved.



A recursively defined picture

Recursive definitions

- The sequence of powers of 2 is given by a_n=2ⁿ for n=0, 1, 2, ...
- Can also be defined by $a_0=1$, and a rule for finding a term of the sequence from the previous one, i.e., $a_{n+1}=2a_n$
- Can use induction to prove results about the sequence

Recursively Defined Functions

- We use two steps to define a function with the set of non-negative integers as its domain:
 - **Basis step**: specify the value for the function at zero
 - **Recursive step**: give a rule for finding its value at an integer from its values at smaller integers
- Such a definition is called a recursive or inductive definition

Suppose f is defined recursively by

- f(o)=3
- f(n+1)=2f(n)+3
- Find f(1), f(2), f(3), and f(4)
- f(1)=2f(0)+3=2*3+3=9
- f(2)=2f(1)+3=2*9+3=21
- f(3)=2f(2)+3=2*21+3=45
- f(4)=2f(3)+3=2*45+3=93

- Give an inductive definition of the factorial function f(n)=n!
- Note that (n+1)!=(n+1)·n!
- We can define f(o)=1 and f(n+1)=(n+1)f(n)
- To determine a value, e.g., f(5)=5!, we can use the recursive function

 $f(5)=5 \cdot f(4)=5 \cdot 4 \cdot f(3)=5 \cdot 4 \cdot 3 \cdot f(2)=5 \cdot 4 \cdot 3 \cdot 2 \cdot f(1)$ =5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \cdot f(0)=5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \cdot 1=120

Recursive functions

- Recursively defined functions are well defined
- For every positive integer, the value of the function is determined in an unambiguous way
- Given any positive integer, we can use the two parts of the definition to find the value of the function at that integer
- We obtain the same value no matter how we apply two parts of the definition

- Give a recursive definition of aⁿ, where a is a non-zero real number and n is a non-negative integer
- The recursive definition contains two parts :
 - First: a^o=1
 - Then the rule for finding $a^{n+1} = a \cdot a^n$ for n = 1, 2, 3, ...
 - These two equations uniquely define aⁿ for all nonnegative integer n

• Give a recursive definition of

• The first part of the recursive definition

$$\sum_{k=0}^{0} a_k = a_0$$

 $\sum_{k=0}^{n} a_k$

• The second part is

$$\sum_{k=0}^{n+1} a_k = (\sum_{k=0}^n a_k) + a_{n+1}$$

Example 5 – Fibonacci numbers

- Fibonacci numbers f₀, f₁, f₂, are defined by the equations, f₀=0, f₁=1, and f_n=f_{n-1}+f_{n-2} for n=2, 3, 4, ...
- By definition
 - $f_{2}=f_{1}+f_{0}=1+0=1$ $f_{3}=f_{2}+f_{1}=1+1=2$ $f_{4}=f_{3}+f_{2}=2+1=3$ $f_{5}=f_{4}+f_{3}=3+2=5$ $f_{6}=f_{5}+f_{4}=5+3=8$

Recursively defined sets and

structures

- Consider the subset S of the set of integers defined by
 - Basis step: 3∈S
 - Recursive step: if $x \in S$ and $y \in S$, then $x + y \in S$
- The new elements formed by this are 3+3=6, 3+6=9, 6+6=12, ...
- We will show that S is the set of all positive multiples of 3 (using structural induction)

String

- Definition 1:
- The set ∑* of strings over the alphabet ∑ can be defined recursively by
 - Basis step: λ∈∑* (where λ is the empty string containing no symbols)
 - Recursive step: if $w \in \Sigma^*$ and $x \in \Sigma$ then $wx \in \Sigma^*$
- The basis step defines that the empty string belongs to string
- The recursive step states new strings are produced by adding a symbol from Σ to the end of stings in Σ^*
- At each application of the recursive step, strings containing one additional symbol are generated

- If ∑={0, 1}, the strings found to be in ∑*, the set of all bit strings, are λ, specified to be in ∑* in the basis step
- 0 and 1 found in the 1st recursive step
- 00, 01, 10, and 11 are found in the 2nd recursive step, and so on

Concatenation

- Definition 2: Two strings can be combined via the operation of concatenation
- Let ∑ be a set of symbols and ∑* be the set of strings formed from symbols in ∑
- We can define the concatenation for two strings by recursive steps
 - Basis step: if $w \in \Sigma^*$, then $w \cdot \lambda = w$, where λ is the empty string
 - Recursive step: If $w_1 \in \Sigma^*$, $w_2 \in \Sigma^*$ and $x \in \Sigma$, then $w_1 \cdot (w_2 x) = (w_1 \cdot w_2)x$
 - Oftentimes $w_1 \cdot w_2$ is rewritten as $w_1 w_2$
 - e.g., w_1 =abra, and w_2 =cadabra, w_1w_2 =abracadabra

Length of a string

- Give a recursive definition of l(w), the length of a string w
- The length of a string is defined by
 - $l(\lambda)=0$
 - l(wx)=l(w)+1 if $w \in \sum^*$ and $x \in \sum$

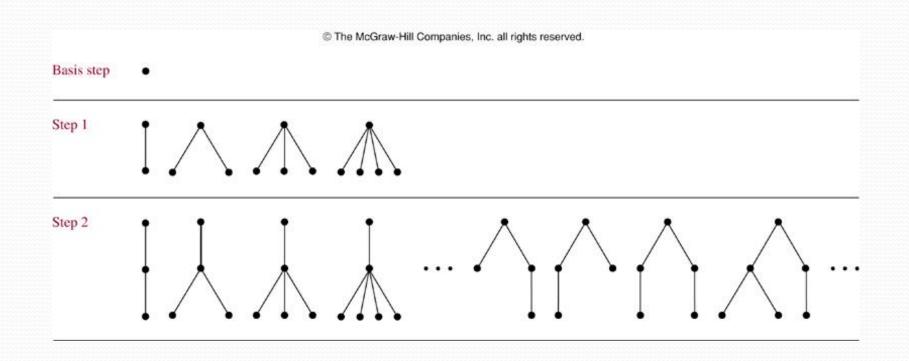
Well-formed formulae

- We can define the set of well-formed formulae for compound statement forms involving T, F, proposition variables, and operators from the set {₇, ∧, ∨, →, ↔}
- Basis step: T, F, and s, where s is a propositional variable are wellformed formulae
- Recursive step: If E and F are well-formed formulae, then $\neg E$, $E \land F$, $E \lor F$, $E \rightarrow F$, $E \leftrightarrow F$ are well-formed formulae
- From an initial application of the recursive step, we know that $(p \lor q), (p \rightarrow F), (F \rightarrow q)$ and $(q \land F)$ are well-formed formulae
- A second application of the recursive step shows that $((p \lor q) \rightarrow (q \land F))$, $(q \lor (p \lor q))$, and $((p \rightarrow F) \rightarrow T)$ are well-formed formulae

Rooted trees

- The set of rooted trees, where a rooted tree consists of a set of vertices containing a distinguished vertex called the root, and edges connecting these vertices, can be defined recursively by
 - Basis step: a single vertex r is a rooted tree
 - Recursive step: suppose that T₁, T₂, ..., T_n are disjoint rooted trees with roots r₁, r₂, ..., r_n, respectively.
 - Then the graph formed by starting with a root r, which is not in any of the rooted trees T₁, T₂, ..., T_n, and adding an edge from r to each of the vertices r₁, r₂, ..., r_n, is also a rooted tree

Rooted trees



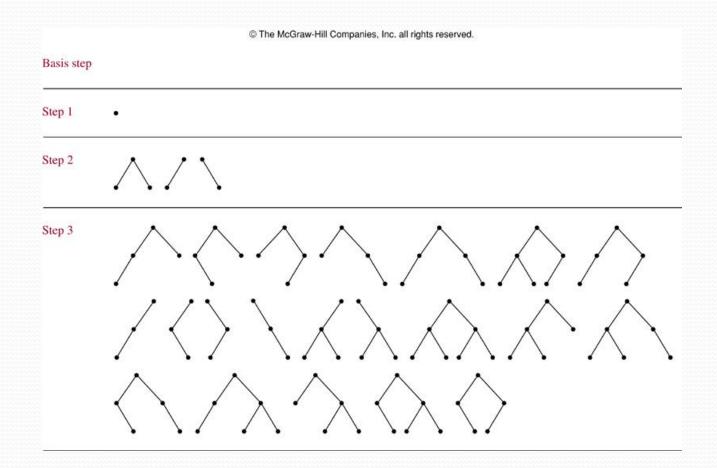
Binary trees

- Binary trees are special type of rooted trees.
- At each vertex, there are at most two branches (one left subtree and one right subtree)
- Extended binary trees: the left subtree or the right subtree can be empty
- Full binary trees: must have left and right subtrees

Extended binary trees

- The set of extended binary trees can be defined by
 - Basis step: the empty set is an extended binary tree
 - Recursive step: If T₁ and T₂ are disjoint extended binary trees, there is an extended binary tree, denoted by T₁ · T₂, consisting of a root r together with edges connecting the root to each of the roots of the left subtree T₁ and right subtree T₂, when these trees are non-empty

Extended binary trees



Full binary trees

- The set of full binary trees can be defined recursively
 - Basis step: There is a full binary tree consisting only of a single vertex r
 - Recursive step: If T₁ and T₂ are disjoint full binary trees, there is a full binary tree, denoted by T₁ · T₂, consisting of a root r together with edges connecting the root to each of the roots of the left subtree T₁ and right subtree T₂

Full binary tree

