
Section 5.3

1

Chapter Summary

 Recursively defined Functions.

 Recursively defined sets and Structures

 Structural Induction

5.3 Recursive definitions and
structural induction

3

A recursively defined picture

Recursive definitions
 The sequence of powers of 2 is given by an=2n for

n=0, 1, 2, …

 Can also be defined by a0=1, and a rule for finding a
term of the sequence from the previous one, i.e.,
an+1=2an

 Can use induction to prove results about the
sequence

4

Recursively Defined Functions
 We use two steps to define a function with the set of

non-negative integers as its domain:

 Basis step: specify the value for the function at zero

 Recursive step: give a rule for finding its value at an
integer from its values at smaller integers

 Such a definition is called a recursive or inductive
definition

5

Example 1
 Suppose f is defined recursively by

 f(0)=3

 f(n+1)=2f(n)+3

Find f(1), f(2), f(3), and f(4)

 f(1)=2f(0)+3=2*3+3=9

 f(2)=2f(1)+3=2*9+3=21

 f(3)=2f(2)+3=2*21+3=45

 f(4)=2f(3)+3=2*45+3=93

6

Example 2
 Give an inductive definition of the factorial function

f(n)=n!

 Note that (n+1)!=(n+1)∙n!

 We can define f(0)=1 and f(n+1)=(n+1)f(n)

 To determine a value, e.g., f(5)=5!, we can use the
recursive function

f(5)=5∙f(4)=5∙4∙f(3)=5∙4∙3∙f(2)=5∙4∙3∙2∙f(1)
=5∙4∙3∙2∙1∙f(0)=5∙4∙3∙2∙1∙1=120

7

Recursive functions
 Recursively defined functions are well defined

 For every positive integer, the value of the function is
determined in an unambiguous way

 Given any positive integer, we can use the two parts of
the definition to find the value of the function at that
integer

 We obtain the same value no matter how we apply two
parts of the definition

8

Example 3
 Give a recursive definition of an, where a is a non-zero

real number and n is a non-negative integer

 The recursive definition contains two parts :

 First: a0=1

 Then the rule for finding an+1= a∙ an for n= 1,2,3,….

 These two equations uniquely define an for all non-
negative integer n

9

Example 4
 Give a recursive definition of

 The first part of the recursive definition

 The second part is

10

n

k

ka
0

0

0

0

aa
k

k

n

k

nk

n

k

k aaa
0

1

1

0

)(

Example 5 – Fibonacci numbers
 Fibonacci numbers f0, f1, f2, are defined by the

equations, f0=0, f1=1, and fn=fn-1+fn-2 for n=2, 3, 4, …

 By definition

f2=f1+f0=1+0=1

f3=f2+f1=1+1=2

f4=f3+f2=2+1=3

f5=f4+f3=3+2=5

f6=f5+f4=5+3=8

11

Recursively defined sets and
structures
 Consider the subset S of the set of integers defined by

 Basis step: 3∊S

 Recursive step: if x∊S and y∊S, then x+y∊S

 The new elements formed by this are 3+3=6, 3+6=9,
6+6=12, …

 We will show that S is the set of all positive multiples of
3 (using structural induction)

12

String
 Definition 1:

 The set ∑* of strings over the alphabet ∑ can be defined
recursively by
 Basis step: 𝜆∊∑* (where 𝜆 is the empty string containing no

symbols)

 Recursive step: if w∊∑* and x∊∑ then wx ∊∑*

 The basis step defines that the empty string belongs to
string

 The recursive step states new strings are produced by
adding a symbol from ∑ to the end of stings in ∑*

 At each application of the recursive step, strings containing
one additional symbol are generated

13

Example 6
 If ∑={0, 1}, the strings found to be in ∑*, the set of all

bit strings, are 𝜆, specified to be in ∑* in the basis step

 0 and 1 found in the 1st recursive step

 00, 01, 10, and 11 are found in the 2nd recursive step,
and so on

14

Concatenation
 Definition 2: Two strings can be combined via the

operation of concatenation

 Let ∑ be a set of symbols and ∑* be the set of strings
formed from symbols in ∑

 We can define the concatenation for two strings by
recursive steps

 Basis step: if w∊∑*, then w∙𝜆=w, where 𝜆 is the empty string

 Recursive step: If w1∊∑*, w2∊∑* and x ∊∑, then w1 ∙ (w2 x)=(w1 ∙
w2)x

 Oftentimes w1 ∙ w2 is rewritten as w1w2

 e.g., w1=abra, and w2=cadabra, w1w2=abracadabra

15

Length of a string
 Give a recursive definition of l(w), the length of a

string w

 The length of a string is defined by

 l(𝜆)=0

 l(wx)=l(w)+1 if w∊∑* and x∊∑

16

Well-formed formulae
 We can define the set of well-formed formulae for compound

statement forms involving T, F, proposition variables, and
operators from the set {┐, ˄, ˅, →, ↔}

 Basis step: T, F, and s, where s is a propositional variable are well-
formed formulae

 Recursive step: If E and F are well-formed formulae, then ┐E,

E˄F, E ˅F, E→F, E ↔F are well-formed formulae

 From an initial application of the recursive step, we know that
(p˅q), (p→F), (F→q) and (q˄F) are well-formed formulae

 A second application of the recursive step shows that ((p˅q)

→(q˄F)), (q˅(p˅q)), and ((p→F)→T) are well-formed formulae

17

Rooted trees
 The set of rooted trees, where a rooted tree consists of

a set of vertices containing a distinguished vertex
called the root, and edges connecting these vertices,
can be defined recursively by

 Basis step: a single vertex r is a rooted tree

 Recursive step: suppose that T1, T2, …, Tn are disjoint rooted
trees with roots r1, r2, …, rn, respectively.

 Then the graph formed by starting with a root r, which is not
in any of the rooted trees T1, T2, …, Tn, and adding an edge
from r to each of the vertices r1, r2, …, rn, is also a rooted tree

18

Rooted trees

19

Binary trees
 Binary trees are special type of rooted trees.

 At each vertex, there are at most two branches (one
left subtree and one right subtree)

 Extended binary trees: the left subtree or the right
subtree can be empty

 Full binary trees: must have left and right subtrees

20

Extended binary trees
 The set of extended binary trees can be defined by

 Basis step: the empty set is an extended binary tree

 Recursive step: If T1 and T2 are disjoint extended binary
trees, there is an extended binary tree, denoted by T1 ∙
T2, consisting of a root r together with edges connecting
the root to each of the roots of the left subtree T1 and
right subtree T2, when these trees are non-empty

21

Extended binary trees

22

Full binary trees
 The set of full binary trees can be defined recursively

 Basis step: There is a full binary tree consisting only of a
single vertex r

 Recursive step: If T1 and T2 are disjoint full binary trees,
there is a full binary tree, denoted by T1 ∙ T2, consisting of
a root r together with edges connecting the root to each
of the roots of the left subtree T1 and right subtree T2

23

Full binary tree

24

