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5.3 Recursive definitions and 
structural induction
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A recursively defined picture



Recursive definitions
 The sequence of powers of 2 is given by an=2n for 

n=0, 1, 2, …

 Can also be defined by a0=1, and a rule for finding a 
term of the sequence from the previous one, i.e., 
an+1=2an

 Can use induction to prove results about the 
sequence
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Recursively Defined Functions
 We use two steps to define a function with the set of 

non-negative integers as its domain:

 Basis step: specify the value for the function at zero

 Recursive step: give a rule for finding its value at an 
integer from its values at smaller integers

 Such a definition is called a recursive or inductive 
definition
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Example 1
 Suppose f is defined recursively by

 f(0)=3

 f(n+1)=2f(n)+3

Find f(1), f(2), f(3), and f(4)

 f(1)=2f(0)+3=2*3+3=9

 f(2)=2f(1)+3=2*9+3=21

 f(3)=2f(2)+3=2*21+3=45

 f(4)=2f(3)+3=2*45+3=93
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Example 2
 Give an inductive definition of the factorial function 

f(n)=n!

 Note that (n+1)!=(n+1)∙n!

 We can define f(0)=1 and f(n+1)=(n+1)f(n)

 To determine a value, e.g., f(5)=5!, we can use the 
recursive function

f(5)=5∙f(4)=5∙4∙f(3)=5∙4∙3∙f(2)=5∙4∙3∙2∙f(1) 
=5∙4∙3∙2∙1∙f(0)=5∙4∙3∙2∙1∙1=120
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Recursive functions
 Recursively defined functions are well defined

 For every positive integer, the value of the function is 
determined in an unambiguous way

 Given any positive integer, we can use the two parts of 
the definition to find the value of the function at that 
integer

 We obtain the same value no matter how we apply two 
parts of the definition
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Example 3
 Give a recursive definition of an, where a is a non-zero 

real number and n is a non-negative integer

 The recursive definition contains two parts :

 First: a0=1

 Then the rule for finding an+1= a∙ an for n= 1,2,3,….

 These two equations uniquely define an  for all non-
negative integer n
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Example 4
 Give a recursive definition of

 The first part of the recursive definition

 The second part is
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Example 5 – Fibonacci numbers
 Fibonacci numbers f0, f1, f2, are defined by the 

equations, f0=0, f1=1, and fn=fn-1+fn-2 for n=2, 3, 4, …

 By definition

f2=f1+f0=1+0=1

f3=f2+f1=1+1=2

f4=f3+f2=2+1=3

f5=f4+f3=3+2=5

f6=f5+f4=5+3=8
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Recursively defined sets and 
structures
 Consider the subset S of the set of integers defined by

 Basis step: 3∊S

 Recursive step: if x∊S and y∊S, then x+y∊S

 The new elements formed by this are 3+3=6, 3+6=9, 
6+6=12, …

 We will show that S is the set of all positive multiples of 
3 (using structural induction)
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String
 Definition 1: 

 The set ∑* of strings over the alphabet ∑ can be defined 
recursively by
 Basis step: 𝜆∊∑* (where 𝜆 is the empty string containing no 

symbols)

 Recursive step: if w∊∑* and x∊∑ then wx ∊∑*

 The basis step defines that the empty string belongs to 
string

 The recursive step states new strings are produced by 
adding a symbol from ∑ to the end of stings in ∑*

 At each application of the recursive step, strings containing 
one additional symbol are generated
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Example 6
 If ∑={0, 1}, the strings found to be in ∑*, the set of all 

bit strings, are 𝜆, specified to be in ∑* in the basis step

 0 and 1 found in the 1st recursive step

 00, 01, 10, and 11 are found in the 2nd recursive step, 
and so on
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Concatenation
 Definition 2: Two strings can be combined via the 

operation of concatenation

 Let ∑ be a set of symbols and ∑* be the set of strings 
formed from symbols in ∑

 We can define the concatenation for two strings by 
recursive steps

 Basis step: if w∊∑*, then w∙𝜆=w, where 𝜆 is the empty string

 Recursive step: If w1∊∑*, w2∊∑* and x ∊∑, then w1 ∙ (w2 x)=(w1 ∙ 
w2)x

 Oftentimes w1 ∙ w2 is rewritten as w1w2

 e.g., w1=abra, and w2=cadabra, w1w2=abracadabra
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Length of a string
 Give a recursive definition of l(w), the length of a 

string w

 The length of a string is defined by

 l(𝜆)=0

 l(wx)=l(w)+1 if w∊∑* and x∊∑ 
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Well-formed formulae
 We can define the set of well-formed formulae for compound 

statement forms involving T, F, proposition variables, and 
operators from the set {┐, ˄, ˅, →, ↔}

 Basis step: T, F, and s, where s is a propositional variable are well-
formed formulae

 Recursive step: If E and F are well-formed formulae, then ┐E, 

E˄F, E ˅F, E→F, E ↔F are well-formed formulae

 From an initial application of the recursive step, we know that 
(p˅q), (p→F), (F→q) and (q˄F) are well-formed formulae

 A second application of the recursive step shows that ((p˅q) 

→(q˄F)), (q˅(p˅q)), and ((p→F)→T) are well-formed formulae
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Rooted trees
 The set of rooted trees, where a rooted tree consists of 

a set of vertices containing a distinguished vertex 
called the root, and edges connecting these vertices, 
can be defined recursively by

 Basis step: a single vertex r is a rooted tree

 Recursive step: suppose that T1, T2, …, Tn are disjoint rooted 
trees with roots r1, r2, …, rn, respectively. 

 Then the graph formed by starting with a root r, which is not 
in any of the rooted trees T1, T2, …, Tn, and adding an edge 
from r to each of the vertices r1, r2, …, rn, is also a rooted tree
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Rooted trees

19



Binary trees
 Binary trees are special type of rooted trees.

 At each vertex, there are at most two branches (one 
left subtree and one right subtree)

 Extended binary trees: the left subtree or the right 
subtree can be empty

 Full binary trees: must have left and right subtrees
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Extended binary trees
 The set of extended binary trees can be defined by

 Basis step: the empty set is an extended binary tree

 Recursive step: If T1 and T2 are disjoint extended binary 
trees, there is an extended binary tree, denoted by T1 ∙ 
T2, consisting of a root r together with edges connecting 
the root to each of the roots of the left subtree T1 and 
right subtree T2, when these trees are non-empty
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Extended binary trees
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Full binary trees
 The set of full binary trees can be defined recursively

 Basis step: There is a full binary tree consisting only of a 
single vertex r

 Recursive step: If T1 and T2 are disjoint full binary trees, 
there is a full binary tree, denoted by T1 ∙ T2, consisting of 
a root r together with edges connecting the root to each 
of the roots of the left subtree T1 and right subtree T2
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Full binary tree
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